\(\int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))} \, dx\) [1017]

   Optimal result
   Rubi [A] (verified)
   Mathematica [F]
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 43, antiderivative size = 269 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))} \, dx=\frac {2 \left (5 A b^2-5 a b B+a^2 (3 A+5 C)\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 a^3 d}-\frac {2 \left (3 A b^3-a^3 B-3 a b^2 B+a^2 b (A+3 C)\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a^4 d}+\frac {2 b^2 \left (A b^2-a (b B-a C)\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a^4 (a+b) d}+\frac {2 A \sin (c+d x)}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {2 (A b-a B) \sin (c+d x)}{3 a^2 d \sqrt {\sec (c+d x)}} \]

[Out]

2/5*A*sin(d*x+c)/a/d/sec(d*x+c)^(3/2)-2/3*(A*b-B*a)*sin(d*x+c)/a^2/d/sec(d*x+c)^(1/2)+2/5*(5*A*b^2-5*B*a*b+a^2
*(3*A+5*C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(
1/2)*sec(d*x+c)^(1/2)/a^3/d-2/3*(3*A*b^3-B*a^3-3*B*a*b^2+a^2*b*(A+3*C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d
*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^4/d+2*b^2*(A*b^2-a*(B*b-C*
a))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*a/(a+b),2^(1/2))*cos(d*x+c
)^(1/2)*sec(d*x+c)^(1/2)/a^4/(a+b)/d

Rubi [A] (verified)

Time = 1.01 (sec) , antiderivative size = 269, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.186, Rules used = {4189, 4191, 3934, 2884, 3872, 3856, 2719, 2720} \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))} \, dx=\frac {2 b^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (A b^2-a (b B-a C)\right ) \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right )}{a^4 d (a+b)}-\frac {2 (A b-a B) \sin (c+d x)}{3 a^2 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \left (a^2 (3 A+5 C)-5 a b B+5 A b^2\right )}{5 a^3 d}-\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \left (a^3 (-B)+a^2 b (A+3 C)-3 a b^2 B+3 A b^3\right )}{3 a^4 d}+\frac {2 A \sin (c+d x)}{5 a d \sec ^{\frac {3}{2}}(c+d x)} \]

[In]

Int[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Sec[c + d*x]^(5/2)*(a + b*Sec[c + d*x])),x]

[Out]

(2*(5*A*b^2 - 5*a*b*B + a^2*(3*A + 5*C))*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(5*a
^3*d) - (2*(3*A*b^3 - a^3*B - 3*a*b^2*B + a^2*b*(A + 3*C))*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[S
ec[c + d*x]])/(3*a^4*d) + (2*b^2*(A*b^2 - a*(b*B - a*C))*Sqrt[Cos[c + d*x]]*EllipticPi[(2*a)/(a + b), (c + d*x
)/2, 2]*Sqrt[Sec[c + d*x]])/(a^4*(a + b)*d) + (2*A*Sin[c + d*x])/(5*a*d*Sec[c + d*x]^(3/2)) - (2*(A*b - a*B)*S
in[c + d*x])/(3*a^2*d*Sqrt[Sec[c + d*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3934

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[d*Sqrt[d*S
in[e + f*x]]*Sqrt[d*Csc[e + f*x]], Int[1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d
, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4189

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1
)*((d*Csc[e + f*x])^n/(a*f*n)), x] + Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[
a*B*n - A*b*(m + n + 1) + a*(A + A*n + C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ
[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rule 4191

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))), x_Symbol] :> Dist[(A*b^2 - a*b*B + a^2*C)/(a^2*d^2), Int[(d*Csc[
e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x], x] + Dist[1/a^2, Int[(a*A - (A*b - a*B)*Csc[e + f*x])/Sqrt[d*Csc[e +
 f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 A \sin (c+d x)}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {2 \int \frac {\frac {5}{2} (A b-a B)-\frac {1}{2} a (3 A+5 C) \sec (c+d x)-\frac {3}{2} A b \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))} \, dx}{5 a} \\ & = \frac {2 A \sin (c+d x)}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {2 (A b-a B) \sin (c+d x)}{3 a^2 d \sqrt {\sec (c+d x)}}+\frac {4 \int \frac {\frac {3}{4} \left (5 A b^2-5 a b B+a^2 (3 A+5 C)\right )+\frac {1}{4} a (4 A b+5 a B) \sec (c+d x)-\frac {5}{4} b (A b-a B) \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))} \, dx}{15 a^2} \\ & = \frac {2 A \sin (c+d x)}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {2 (A b-a B) \sin (c+d x)}{3 a^2 d \sqrt {\sec (c+d x)}}+\frac {4 \int \frac {\frac {3}{4} a \left (5 A b^2-5 a b B+a^2 (3 A+5 C)\right )-\left (-\frac {1}{4} a^2 (4 A b+5 a B)+\frac {3}{4} b \left (5 A b^2-5 a b B+a^2 (3 A+5 C)\right )\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx}{15 a^4}+\frac {\left (b^2 \left (A b^2-a (b B-a C)\right )\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{a+b \sec (c+d x)} \, dx}{a^4} \\ & = \frac {2 A \sin (c+d x)}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {2 (A b-a B) \sin (c+d x)}{3 a^2 d \sqrt {\sec (c+d x)}}-\frac {\left (3 A b^3-a^3 B-3 a b^2 B+a^2 b (A+3 C)\right ) \int \sqrt {\sec (c+d x)} \, dx}{3 a^4}+\frac {\left (5 A b^2-5 a b B+a^2 (3 A+5 C)\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{5 a^3}+\frac {\left (b^2 \left (A b^2-a (b B-a C)\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{a^4} \\ & = \frac {2 b^2 \left (A b^2-a (b B-a C)\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a^4 (a+b) d}+\frac {2 A \sin (c+d x)}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {2 (A b-a B) \sin (c+d x)}{3 a^2 d \sqrt {\sec (c+d x)}}-\frac {\left (\left (3 A b^3-a^3 B-3 a b^2 B+a^2 b (A+3 C)\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{3 a^4}+\frac {\left (\left (5 A b^2-5 a b B+a^2 (3 A+5 C)\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{5 a^3} \\ & = \frac {2 \left (5 A b^2-5 a b B+a^2 (3 A+5 C)\right ) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 a^3 d}-\frac {2 \left (3 A b^3-a^3 B-3 a b^2 B+a^2 b (A+3 C)\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a^4 d}+\frac {2 b^2 \left (A b^2-a (b B-a C)\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticPi}\left (\frac {2 a}{a+b},\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a^4 (a+b) d}+\frac {2 A \sin (c+d x)}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {2 (A b-a B) \sin (c+d x)}{3 a^2 d \sqrt {\sec (c+d x)}} \\ \end{align*}

Mathematica [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))} \, dx=\int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))} \, dx \]

[In]

Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Sec[c + d*x]^(5/2)*(a + b*Sec[c + d*x])),x]

[Out]

Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(Sec[c + d*x]^(5/2)*(a + b*Sec[c + d*x])), x]

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(800\) vs. \(2(323)=646\).

Time = 2.52 (sec) , antiderivative size = 801, normalized size of antiderivative = 2.98

method result size
default \(\text {Expression too large to display}\) \(801\)

[In]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(5/2)/(a+b*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-4/5*A/a/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*
c)^2)^(1/2)*(4*sin(1/2*d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-14*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*
x+1/2*c)^2*cos(1/2*d*x+1/2*c)-5*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/
2*d*x+1/2*c),2^(1/2))+9*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/
2*c)^2)^(1/2))-4/3/a^2*(3*A*a+A*b-B*a)*(2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4-sin(1/2*d*x+1/2*c)^2*cos(1/2
*d*x+1/2*c)+2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/
2))-3*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2))/(-2
*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)-2*b^2*(A*b^2-B*a*b+C*a^2)/a^3/(a^2-a*b)*(sin(1/2*d*x+1/2*c)^
2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos
(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))+2/a^3*(3*A*a^2+2*A*a*b+A*b^2-2*B*a^2-B*a*b+C*a^2)*(sin(1/2*d*x+1/2*c)^2)^(1
/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*
d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-2*(A*a^3+A*a^2*b+A*a*b^2+A*b^3-B*a^3-B*a^2*b-B*a*b^
2+C*a^3+C*a^2*b)/a^4*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+s
in(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1
)^(1/2)/d

Fricas [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{{\left (b \sec \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(5/2)/(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(sec(d*x + c))/(b*sec(d*x + c)^4 + a*sec(d*x + c)^3), x)

Sympy [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))} \, dx=\int \frac {A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right ) \sec ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)/sec(d*x+c)**(5/2)/(a+b*sec(d*x+c)),x)

[Out]

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)/((a + b*sec(c + d*x))*sec(c + d*x)**(5/2)), x)

Maxima [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{{\left (b \sec \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(5/2)/(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/((b*sec(d*x + c) + a)*sec(d*x + c)^(5/2)), x)

Giac [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A}{{\left (b \sec \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/sec(d*x+c)^(5/2)/(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)/((b*sec(d*x + c) + a)*sec(d*x + c)^(5/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{\sec ^{\frac {5}{2}}(c+d x) (a+b \sec (c+d x))} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

[In]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/((a + b/cos(c + d*x))*(1/cos(c + d*x))^(5/2)),x)

[Out]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/((a + b/cos(c + d*x))*(1/cos(c + d*x))^(5/2)), x)